HONEYWELL REFERENCE PRESSURE REGULATOR

FRIDAY, 27 APRIL 2018

MYLA AZOFEIFA, JORDAN LOOS, WILLIAM MCGINN, ALEX RUSTAEY, YITONG ZHANG

Project Description

- Client: Honeywell
 - Dave Tornquist: Chief Engineer
 - Haley Flenner: Project Engineer
 - Kayla Goodrich: Project Engineer

Instructors

- Dr. David Trevas
- Amy Swartz

- Reference Pressure Regulator
 - Takes a varying inlet pressure and turns it into a consistent reference pressure for use by pneumatic controls
- Project Goal
 - Trade study of historical designs and redesign to overcome identified issues

Current Design / Flaws

Identified Problems

- Hysteresis
 - Minimize hysteresis (friction) in system
 - Caused by air contaminants such as silica dust or smog
- Leakage
 - Uneven wear on the poppet valve causes air leakage through valve

• Final Product Requirements

- Temperature range from -40 to 1300 °F
- Control inlet pressures between atmospheric pressure and 600 psig
- Scalable from ³/₈" up to 10" line diameter
- Outlet pressure accurate to ±1 psig

Concept Prototyping

Turbo Expander

Bellows Valve

- Pulls power out of the flow to reduce pressure and generates electricity
- Uses electric speed control (ESC) to apply magnetic drag to the turbine and create a controllable pressure drop proportional to turbine speed

- Replaces poppet closure element
- Uses similar mechanical pressure balance as current design
- Valve closes around diaphragm stem to eliminate surface area prone to friction

Prototype Pros and Cons

Both designs were viable - time constraints allowed significant progress on only one design

Turbo Expander

- Pros
 - Quick reaction
 - Digital accuracy
 - Generates power
- Cons
 - More modes of failure
 - Less scalable

Bellows Valve

- Pros
 - Simple, mechanical function
 - Original design
 - Addresses hysteresis
- Cons
 - Difficult to manufacture

Decided on bellows valve to pursue an original design

Initial Prototype

Case

Closure Element

- Original case printed at Cline Library in PLA
 - The case warped while printing and cracked during assembly
- Tested case printed at Rapid Lab in ABS
 - Printed using soluble support material to achieve a high accuracy part
 - Some leaking issues

- Original bellows printed at Cline Library in PLA
 - Print failed because of incorrect orientation
 - PLA did not allow bellows motion
- Tested bellows printed on teammates personal printer in 3D solutech flexible filament
 - After some trial and error a usable bellows was created

Testing Procedure and Data

Results

- Linear response is observed
 - Only represented by the 3 data points starting at .25 in stroke distance
- Redesign of the case and bellows required to determine an accurate response of pressure to stroke distance

Procedure

- Bellows were pushed closed with the adjustment bolt
 - Bolt turns converted to stroke distance with the thread of the bolt
 - Change in pressure was read across the two pressure gauges
 - A non-dimensional K-Value for the value at each stroked distance was obtained with the minor head loss equation \bar{V}^2

$$h_{l,m} = K \frac{V^2}{2}$$

Post-Testing Improvement: Geometry Analysis

- Design Bellows to reach full closure to create greater throttling effect
- Orifice Area can be defined on a plane, rather than hyperbolically

- Initial angles and lengths can be determined so that the valve is capable of full closure
 - Full closure occurs when the guide rod occupies the entire frustum area, the triangles will be closed

BELLOWS VALVE: FINAL DESIGN

MANUFACTURING PROCESSES

- Prototyping: Multi-stage process
 - 3D Printing
 - Bellows Valve
 - Diaphragm
 - CNC Machining Case Halves
- Final Product Manufacturing
 - Kinemotive Corporation Bellows
 - Casting Case Halves

Conclusion

- The validity of the bellows closure element was proved through the testing data
- Flaws Addressed
 - Addressed Hysteresis
 - Removing contact area within guide rod and sleeve
 - Friction minimized on guide rod
 - Resilience to contamination increased
 - Leakage
 - Further testing will be required to determine whether leakage was improved

Lessons Learned

- Reverse engineering a product and improving upon proven existing concepts
- Engineering team / client communication
- Scheduling and budget for a design process
- The time and effort required to take a complicated design from concept to reality

QUESTIONS?